链表
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。
链表和数组有什么区别呢?
数组需要一块连续的内存空间来存储,对内存的要求比较高。如果我们申请一个 100 MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的生育总可用空间大于 100 MB,仍然会申请失败。
而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用。所以如果我们申请的是 100MB 大小的链表,根本不会有问题。
链表结构
链表中最常见的三种结构:单链表、双向链表和循环链表。
单链表
链表通过指针将一组零散的内存块串联在一起。其中,我们把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,我们把这个记录下个结点地址的指针叫作后继指针 next。如下图
在单链表中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。我们习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。
与数组一样,链表也支持数据的查找、插入和删除操作。
我们知道,在进行数组的插入、删除操作时,为了保持内存数据的连续性,需要做大量的数据搬移,所以时间复杂度是 O(n)。而在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。
如下图,针对链表的插入和删除操作,只需要考虑相邻节点的指针改变,所以对应的时间复杂度是 O(1)。
但是,有利就有弊。链表要想随机访问第 k 个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。
你可以把链表想象成一个队伍,队伍中的每个人都只知道自己后面的人是谁,所以当我们希望知道排在第 k 位的人是谁的时候,我们就需要从第一个人开始,一个一个地往下数。所以,链表随机访问的性能没有数组好,需要 O(n) 的时间复杂度。
循环链表
循环链表是一种特殊的单链表,它跟单链表唯一的区别就是在尾结点。单链表的尾节点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。如下图:
和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的约瑟夫问题。尽管用单链表也可以实现,但是用循环链表实现的话,代码就会简洁很多。
双链表
单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。而双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。如下图:
双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。那相比单链表,双向链表适合解决哪种问题呢?
从结构上来看,双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
单链表的插入、删除操作的时间复杂度已经是 O(1) 了,双向链表还能再怎么高效呢?先看看链表的两个操作:
删除操作
在实际的软件开发中,从链表中删除一个数据无外乎两种情况:
- 删除结点中“值等于某个给定值”的节点;
- 删除给定指针指向的节点。
尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。
对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。
但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!
添加操作
同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。
除了插入、删除操作有优势之外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。因为,我们可以记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。
在删除操作和增加操作中,双链表比单链表要更加高校,但相对应的由于多增加了一个字段去存储前驱指针,所以相对单链表来说要更加费内存,这个就要取舍了。
编写链表代码时的技巧
利用头节点来简化实现难度
先来看看单链表的插入和删除操作。如果我们在结点 p 后面插入一个新的结点,只需要下面两行代码就可以搞定。
1 | new_node->next = p->next; |
但是,当我们要向一个空链表中插入第一个结点,刚刚的逻辑就不能用了。我们需要进行下面这样的特殊处理,其中 head 表示链表的头结点。所以,从这段代码,我们可以发现,对于单链表的插入操作,第一个结点和其他结点的插入逻辑是不一样的。
1 | if (head == null) { |
再来看单链表结点删除操作。如果要删除结点 p 的后继结点,我们只需要一行代码就可以搞定。
1 | p->next = p->next->next; |
如果我们要删除链表中的最后一个结点,前面的删除代码就不工作了。跟插入类似,我们也需要对于这种情况特殊处理。写成代码是这样子的:
1 | if (head->next == null) { |
从前面的一步一步分析,我们可以看出,针对链表的插入、删除操作,需要对插入第一个结点和删除最后一个结点的情况进行特殊处理。 这样代码实现起来就会很繁琐,不简洁,而且也容易因为考虑不全而出错。如何来解决这个问题呢?
这时候就可以使用头节点了,头节点是用来解决“边界问题”的,不直接参与业务逻辑。
如果我们引入头结点,在任何时候,不管链表是不是空,head 指针都会一直指向这个头结点。我们也把这种有头结点的链表叫带头链表。相反,没有头结点的链表就叫作不带头链表。
重点留意边界条件处理
软件开发中,代码在一些边界或者异常情况下,最容易产生 Bug。链表代码也不例外。要实现没有 Bug 的链表代码,一定要在编写的过程中以及编写完成之后,检查边界条件是否考虑全面,以及代码在边界条件下是否能正确运行。
下面是可以用来检查链表代码是否正确的边界条件:
- 如果链表为空时,代码是否能正常工作?
- 如果链表只包含一个结点时,代码是否能正常工作?
- 如果链表只包含两个结点时,代码是否能正常工作?
- 代码逻辑在处理头结点和尾结点的时候,是否能正常工作?
当写完链表代码之后,除了看下你写的代码在正常的情况下能否工作,还要看下在上面列举的几个边界条件下,代码仍然能否正确工作。如果这些边界条件下都没有问题,那基本上可以认为没有问题了。
举例画图,辅助思考
对于稍微复杂的链表操作,比如单链表反转,指针一会儿指这,一会儿指那,一会儿就被绕晕了。总感觉脑容量不够,想不清楚。所以这个时候就要使用大招了,举例法和画图法。
你可以找一个具体的例子,把它画在纸上,释放一些脑容量,留更多的给逻辑思考,这样就会感觉到思路清晰很多。比如往单链表中插入一个数据这样一个操作,我一般都是把各种情况都举一个例子,画出插入前和插入后的链表变化。
链表具体实现
[[Go实现链表]]